| 知乎专栏 |
NumPy is the fundamental package for scientific computing with Python.
np.random.seed(1) 两次产生的随机数相同
import numpy as np np.random.seed(1) L1 = np.random.randn(3, 3) L2 = np.random.randn(3, 3) print(L1) print(L2)
[[-1.32959475 -0.35726593 -1.01824748] [-0.16875459 -1.40799966 -0.42432159] [-2.90363742 0.77847352 -0.03868502]] [[ 0.8140817 0.47350462 -0.44832424] [-0.21463067 0.18678995 -1.56375306] [ 0.39748247 -0.74620674 -0.97122838]]
生成随机浮点矩阵数组
import numpy as np number = np.random.rand(10, 5) print(number)
neo@MacBook-Pro-Neo ~/workspace/python % python3.9 /Users/neo/workspace/python/numpy/test.py [[0.07210811 0.89871612 0.31670349 0.88870892 0.38252093] [0.08210199 0.37878429 0.09693934 0.53084051 0.81222326] [0.99527501 0.39815405 0.02937093 0.21271075 0.09775669] [0.97038382 0.10373132 0.60815363 0.00740848 0.51247618] [0.77290466 0.7961732 0.21776523 0.27498686 0.84316289] [0.11457979 0.98606765 0.36357378 0.00754072 0.62702464] [0.19330684 0.60832298 0.57052479 0.81215836 0.04167786] [0.71456373 0.9203253 0.27650414 0.6247527 0.28517774] [0.85126634 0.06420073 0.92123025 0.84654969 0.11828913] [0.38481704 0.95317434 0.62498057 0.5297113 0.22969415]]
pd.DataFrame(np.random.rand(10,2))
np.random.randint(从 0 ,到 255,(5,6,3))
import numpy as np np.random.seed(1) x = np.random.randint(0,255,(5,6,3)) print(x)
[[[ 37 235 140] [ 72 137 203] [133 79 192] [144 129 204] [ 71 237 252] [134 25 178]] [[ 20 254 101] [146 212 139] [252 234 156] [157 142 50] [ 68 215 215] [233 241 247]] [[222 96 86] [141 233 137] [ 7 63 61] [ 22 57 1] [128 60 209] [ 8 216 141]] [[115 175 234] [121 200 30] [ 71 131 198] [149 49 57] [ 3 196 24] [241 43 76]] [[ 26 52 80] [109 115 41] [210 15 64] [196 25 111] [226 215 135] [ 26 153 104]]]
从0 到 100,间隔为10的数值序列
n = np.linspace(start = 0, stop = 100, num = 11) x = np.linspace(-3, 3, 50)
import numpy as np np.random.seed(1) matrix = np.random.randint(0,255,(5,6,3)) print(matrix.shape)
(5, 6, 3)
import numpy numpy.random.seed(1) matrix = numpy.random.randint(0,255,(5,6,3)) print(matrix.dtype)
# 创建一个包含学生成绩的二维数组
data = np.array([
['Alice', 85, 92, 78],
['Bob', 89, 90, 95],
['Charlie', 91, 85, 88],
['David', 78, 80, 82]
])
# 提取成绩列(忽略姓名列)
grades = data[:, 1:].astype(int)
print(grades)
# 计算每位学生的最高成绩
max_grades = np.max(grades, axis=1)
print(max_grades)
# 打印结果
for i, student in enumerate(data[:, 0]):
print(f"{student} 的最好成绩是: {max_grades[i]}")
import numpy as np
help(np.amax)
a = np.arange(9).reshape((3, 3))
max_all = np.amax(a)
max_dimension1 = np.amax(a, axis=0)
max_dimension2 = np.amax(a, axis=1)
print('a:\n', a)
print('max_all:', max_all)
print('max_dimension1:', max_dimension1)
print('max_dimension2:', max_dimension2)
D:\workspace\netkiller\.venv\Scripts\python.exe D:\workspace\netkiller\test\test1.py
Help on _ArrayFunctionDispatcher in module numpy:
amax(a, axis=None, out=None, keepdims=<no value>, initial=<no value>, where=<no value>)
Return the maximum of an array or maximum along an axis.
`amax` is an alias of `~numpy.max`.
See Also
--------
max : alias of this function
ndarray.max : equivalent method
a:
[[0 1 2]
[3 4 5]
[6 7 8]]
max_all: 8
max_dimension1: [6 7 8]
max_dimension2: [2 5 8]